SOME BASIC CONCEPTS

OF CHEMISTRY

Atomic & Molecular Mass

Atomic Mass =
$$\frac{\text{mass of an element}}{(\frac{1}{12})\text{mass of 1-C atom}}$$

Molecular Mass = $\frac{\text{mass of a molecule}}{(\frac{1}{12})\text{mass of } 1\text{-}C^{12}\text{atom}}$

Both are dimensionless quantity

Molar Mass

Mass of N_A number of particles (calculated in grams)

Number of moles (n)

$$n = \frac{\text{Given w}}{\text{M. W.}} = \frac{\text{No. of particles}}{6.02 \times 10^{23}} = \frac{\text{V at STP}}{22.4\text{L}}$$

1

Percentage Composition

% composition =
$$\frac{A.W. \times no. of atoms}{Total Molecular weight} \times 100$$

Density (Absolute and relative)

Case of Solids and Liquids

Absolute Density (g/mL)

Density (d) =
$$\frac{\text{Mass}}{\text{Volume}}$$

Specific Gravity (Unitless)

R. D. =
$$\frac{\text{Density of substance}}{\text{Density of water at } 4^{\circ}\text{C}}$$

Case of Gases

Absolute Density (g/L)

$$d = \frac{PM}{RT} \quad \begin{array}{c} R = Gas \\ Constant \end{array}$$

Relative Density (Unitless)

$$d \propto M$$
; $\frac{d_1}{d_2} = \frac{M_1}{M_2}$

Vapour Density (V.D.)

V. D. =
$$\frac{M_1}{M_{H_2}} = \frac{M_1}{2}$$
 Density of the gas with respect to hydrogen gas at constant T,P

Average Atomic Weight for isotopes

$$\sum$$
 (%Abundance × Atomic Weight) /100

Mean Molar mass

$$\sum n_i M_i / \sum n_i$$

Molecular and Empirical Formula

Molecular Formula (H₂O₂)

Formula showing exact number of atoms present of each element in one molecule of compound

Empirical Formula (HO)

Formula showing simplest ratio of atoms present of each element in one molecule of compound

$$M. F. = (E. F.)_x$$
 where $x = \frac{Molecular mass}{Empirical mass}$

Element

Relative moles (%/A.W.)

Simplest ratio

Simplest whole no.

Concentration Terms

Mole Fraction (x): For a mixture of A, B & C.

$$x_A = \frac{n_A}{n_A + n_B + n_C}$$
 and $x_A + x_B + x_C = 1$

Percentage by Mass

$$\frac{\%W}{W} = \frac{W_{\text{solute}}}{W_{\text{solution}}} \times 100$$

Percentage by Volume

$$\frac{\%V}{V} = \frac{V_{\text{solute}}}{V_{\text{solution}}} \times 100$$

Percentage mass/volume

$$\frac{\%\text{w}}{\text{V}}$$
 in g/mL = $\frac{\text{w}_{\text{solute}}}{\text{V}_{\text{solution}}} \times 100$ e.g. 20g Glucose in 100mL solution

Parts per million (ppm)

$$ppm = \frac{w_{solute}}{w_{solution}} \times 10^6 ; ppb = \frac{w_{solute}}{w_{solution}} \times 10^9$$

Concentration Terms (Solute = B; Solvent = A)

Molarity (mol L⁻¹)

Temp. Dependent

$$M = \frac{n_{B}}{V_{sol}(L)}$$

Molality (mol kg⁻¹)

Temp. Independent

$$m = \frac{n_B}{w_{sol}(kg)}$$

Terms with
Volume are
Temp.
Dependent

Relation between concentration terms

Between M and %w/w

$$M = \frac{10. z. d}{MW_B}$$
; $z = \frac{\%w}{w}$

d = density in g/mL or g/cc

Between M and m

$$M = \frac{m.\,d}{1+m.\frac{MW_B}{1000}}$$

Molarity on Dilution

$M_f V_f = M_i V_i$

Molarity on mixing

$$M_{\text{mix}} = \frac{M_1 V_1 + M_2 V_2 \dots}{V_1 + V_2 \dots}$$

NORMALITY (N) = Molarity x n-factor

Normality =
$$\frac{\text{no. of g - equivalents of solute}}{\text{Volume of solution (L)}}$$

- n-Factor for Acids = No. H⁺ ions, e.g. HCl = 1
- n-Factor for Bases = No. of OH⁻ ions, e.g. Mg(OH)₂ = 2
- In redox reaction, n factor is calculated by multiplying the change in oxidation state with no. of atoms present in the molecule.

4

